Trudinger-Moser Embedding on the Hyperbolic Space
نویسندگان
چکیده
منابع مشابه
Singular Moser-Trudinger inequality with the exact growth condition on hyperbolic space
In this paper, we are concerned with a singular version of the Moser-Trudinger inequality with the exact growth condition in the n-dimension hyperbolic space [Formula: see text]. Our result is a natural extension of the work of Lu and Tang in (J. Geom. Anal. 26:837-857, 2016).
متن کاملOn a Multi-particle Moser-trudinger Inequality
We verify a conjecture of Gillet-Soulé. We prove that the determinant of the Laplacian on a line bundle over CP is always bounded from above. This can also be viewed as a multi-particle generalization of the Moser-Trudinger Inequality. Furthermore, we conjecture that this functional achieves its maximum at the canonical metric. We give some evidence for this conjecture, as well as links to othe...
متن کاملA Hardy–Moser–Trudinger inequality
In this paper we obtain an inequality on the unit disk B in R2, which improves the classical Moser-Trudinger inequality and the classical Hardy inequality at the same time. Namely, there exists a constant C0 > 0 such that ∫ B e 4πu2 H(u) dx ≤ C0 <∞, ∀ u ∈ C 0 (B), where H(u) := ∫
متن کاملRemarks on the Extremal Functions for the Moser-Trudinger Inequalities
We will show in this paper that if λ is very close to 1, then I(M,λ,m) = sup u∈H 0 (M), ∫
متن کاملSharp Form for Improved Moser-trudinger Inequality
S2 (|∇u| + 2u)}, and the equality holds if and only if eg is a metric of constant curvature. In the study of deforming metrics and prescribing curvatures on S, this inequality is often used to control the size and behavior of a new metric eg0 near a concentration point. With certain “balance” condition on the metric one would guess that if the metric concentrates, it should concentrate at more ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2014
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2014/908216